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Abstract

To address the group key management problem for modern networks this re-

search proposes a lightweight group key management protocol with a gossip-based

dissemination routine. Experiments show that by slightly increasing workload for the

key update mechanism, this protocol is superior to currently available tree-based pro-

tocols with respect to reliability and fault tolerance, while remaining scalable to large

groups. Java simulations show that the protocol efficiently distributes keys to large

groups in the midst of up to 35 percent node failure rates. In addition, it eliminates

the need for logical key hierarchy while preserving an overall reduction in rekey mes-

sages to rekey a group. The protocol provides a simple “pull” mechanism to ensure

perfect rekeys in spite of the primary rekey mechanism’s probabilistic guarantees,

without burdening key distribution facilities. Parameters for overlay management

and gossip are improved to minimize rekey message traffic while remaining tolerant

to node failure.
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Scalable and Fault Tolerant Group Key Management

I. Introduction

Since the late 1990s, an increasing popularity in group-based messaging sys-

tems has stimulated research into secure group communication protocols. Today,

secure group communication is utilized in a wide array of applications, from military

command and control to power system monitoring and control and many others. The

secure group communication problem is beset by several subproblems, namely the

group key management problem, which asks: how can a group most efficiently share

a common symmetric key secretly among communicating endpoints?

The group key management problem presents new challenges as modern network

topologies evolve and practical limitations prevent the continued use of currently

available algorithms. Specifically, with secure group communications spanning wide

geographical regions and IP multicast becoming increasingly unsupported, group key

management is forced to rely heavily on mechanism development above the network

layer. Blindly applying dated multicast algorithms to overlay networks can result in

undesirable consequences and exhibit low levels of fault tolerance; Chapter 2 discusses

these drawbacks in detail.

1.1 Requirement for Scalability and Fault Tolerance in Future Networks

As the “Smart Grid” effort takes shape in North America, an initiative is un-

derway to deploy and synchronize phasor measurement units (PMUs) across the con-

tinent. The resultant “synchrophasor” technology monitors the health of power sys-

tems at individual locations by measuring phase angles on transmission lines, and

then comparing the waves from different locations against a common time source

such as global positioning satellite (GPS) [15]. This type of measurement can be used

effectively in power system state estimation and, when deployed continentally, can

potentially predict national power system events [15].
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The requirement for secure, scalable, wide-area communications follows directly

from this initiative. Note that as a result of deregulation within the power industry,

power system communications now rely almost exclusively on the Internet. As smaller

companies responsible for transmission and distribution enter the picture with perhaps

limited data capabilities, the need for fault tolerance becomes increasingly apparent.

This challenge presents a considerable opportunity to create a fault tolerant algorithm

for secure PMU communication in early stages of Smart Grid development.

1.2 Research Overview

To address the group key management problem for modern networks this re-

search proposes a lightweight group key management protocol with a gossip-based

dissemination routine. Experiments show that by slightly increasing workload for the

key update mechanism, this protocol is superior to currently available tree-based pro-

tocols with respect to reliability and fault tolerance, while remaining scalable to large

groups. In addition, it eliminates the need for logical key hierarchy while preserving an

overall reduction in rekey messages to rekey a group. The protocol provides a simple

“pull” mechanism to ensure perfect rekeys in spite of the primary rekey mechanism’s

probabilistic guarantees, without burdening key distribution facilities.

Benefits of this protocol are quantified versus tree-based dissemination in Java

simulations on networks exhibiting various node failure rates.

1.3 Organization

This thesis is organized as follows:

∙ Chapter 1: Introduces the problem and research goals.

∙ Chapter 2: Discusses the history of group key management, gossip-based mul-

ticast algorithms, and the need for secure and fault tolerant protocols in future

networks.
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∙ Chapter 3: Discusses the specific problem domain, proposes a protocol to re-

spond to the problem, and provides a methodology for evaluating the viability

of the presented protocol over existing tree-based protocols.

∙ Chapter 4: Provides quantitative results for the experiments outlined in Chap-

ter 3 and interprets the statistical significance of any cause and effect relation-

ships.

∙ Chapter 5: Concludes with a summary of results and suggestions for future

research.

∙ Appendix A: Includes additional figures from Chapter 4.
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II. Literature Review

“It is recognized that future networks will have requirements that will
strain the capabilities of current key management architectures. One of
these requirements will be the secure multicast requirement. The need
for high bandwidth, very dynamic secure multicast communications is
increasingly evident in a wide variety of commercial, government, and
Internet communities. Specifically, the secure multicast requirement is the
necessity for multiple users who share the same security attributes and
communication requirements to securely communicate with every other
member of the multicast group using a common multicast group net key.”

–RFC 2627 [19]

Early research into group security protocols began largely in response to several

Internet Engineering Task Force (IETF) requests for comment (RFC), namely RFC

1949, “Scalable Multicast Key Distribution” in 1996 [1], and RFC 2627, “Key Man-

agement for Multicast: Issues and Architectures” in 1999 [19]. Since the publication

of these RFCs, much research has been conducted to help solve the many challenges

of secure group communication and the underlying problem of group key manage-

ment. This chapter defines the group key management problem, outlines the specific

challenges of group key management, and reviews the relevant work that has been ac-

complished until now. Section 2.1.5.1 summarizes current research into gossip-based

multicast, and 1.1 discusses the emerging requirement for secure and fault tolerant

multicast communications systems.

2.1 Group Key Management

2.1.1 Definition. Group communication enables a single node on a data

network to send messages to many recipients. The group key management problem

addresses the difficult task of distributing and controlling encryption keys to effec-

tively secure group communication. Although point-to-point communications can

be efficiently secured via public-key cryptography algorithms such as RSA [17] and

Diffie-Hellman-Merkle [4], group communication is not efficiently encrypted with these

algorithms. In order for messages with many destinations to be efficiently encrypted,

members must agree upon and share a secret, symmetric key which they then use for

4



both encryption and decryption. Within the context of group communication, this is

called the group key.

A group key management protocol addresses the distribution of group keys

based upon the following primitives:

Centralization of key distribution and member management. A given proto-

col may stipulate that specific group members, called key distributors (KD),

be responsible for generating, disseminating, and controlling group keys. Alter-

nately, it may opt for a decentralized approach, leaving key distribution in the

hands of ordinary group members.

Rekey frequency. One of the most defining aspects of a given protocol is the fre-

quency at which KDs create and disseminate new keys. A protocol that opts to

rekey at specific time intervals may be more reliable (nodes know when to ask

for a new key if they miss an update), whereas a protocol that generates rekeys

only after a group key has been compromised may be more secure [19].

Join policy. When a node requests to join a group and receive its dissemination key,

the protocol specifies policy for authenticating the node, granting or denying its

request, supplying it the current group key, and ensuring that it receives future

key updates.

Leave policy. When a node requests to leave a group, the group key management

protocol decides whether to rekey active nodes or continue using the existing

group key. This depends on the particular group’s security policy.

Removal policy. In the event that a node loses its group’s trust and is selected for

removal, the group key management protocol responds according to the given

group’s security policy. The consequences of this policy are closely related to

those of rekey frequency. Note that a group key management protocol does

not address the mechanisms that actually decide when to remove certain nodes;

that is instead the responsibility of a group management or trust protocol.

5



Key dissemination mechanism. This describes the logical manner in which keys

move from the KDs to the member nodes. A given protocol’s chosen dissemina-

tion mechanism is developed based upon its specific goals and constraints. The

following section outlines these goals and constraints, and Chapter 3 discusses

them with respect to the specific problem domain.

2.1.2 Challenges. The fundamental challenge of group key management can

be summarized in a question: how can group keys be shared most efficiently so that

only the members of a group receive the key, and non-members cannot?

Like most problems in distributed systems and security, the answer is actually

a second line of questions which collectively ask, “Which aspects of group key man-

agement are most important to the specific application?” The following list outlines

the most common goals and constraints that arise in group key management, with

respect to key initialization and group rekeying [5]:

∙ scalability

∙ platform portability and independence

∙ ease of use (end user and API)

∙ use of multicast (for the group key management system itself)

∙ performance (load, number of messages per rekey)

∙ key lifetime, escrow, perfect forward secrecy (PFS)

∙ cryptographic techniques (encrypting, signing)

∙ integration with security at other layers

∙ cost

∙ fault tolerance

∙ network topology (logical and physical)

∙ flexibility, user modifiability

6



The majority of research over the past decade focuses almost exclusively on

optimizing some subset of the issues listed above. In particular, scalability, use of

multicast, and performance have been high-value research areas and drive the majority

of modern technique development. Platform independence has recently emerged as

an area of interest for multicast over wide area networks (WAN), with the virtual

abandonment of MBONE around the turn of the century. Development of WAN group

communication protocols has been left to rely heavily on mechanism development

above the network layer.

There is no single, unified solution that optimizes all of the subproblems listed

above. Most solutions that exist today come with a system of trade-offs that value

some aspects at the expense of others. The following subsections explore existing

solutions to secure group communication and the group key management problem.

2.1.3 Early Solutions. The earliest and simplest group key management

solutions, such as those found in RFC 1949 and RFC 2093, proposed frameworks to

establish and disseminate session keys via flat topologies or trees. In this context, a

flat topology is one in which a KD communicates directly with each member node

to establish keys; as a group becomes very large, the KD will eventually become

overburdened and cease functioning properly or efficiently. A tree topology utilizes

a tree data structure to more efficiently delegate the key dissemination workload to

interior tree nodes. See Figure 2.1 for the general concept of tree-based dissemination:

the KD exists at the root of a tree whose remaining nodes represent other nodes on

the network; when a new key must be disseminated, the key KD forwards the new

key to its children only, and the children pass the key to their children, and so forth

until every node in the tree has received the new key. These tree-based frameworks

provide high levels of reliability and performance (i.e., few messages required for rekeys

and removals, fast delivery from root to leaf) and are generally easy to implement.

However, tree-based solutions come with the penalty of either low fault tolerance

7



Figure 2.1: Tree-based dissemination via infrastructure or
overlay

or lack of scalability. The following subsections explore the specific benefits and

shortcomings of early implementations.

2.1.3.1 Core Based Tree. Ballardie et al. proposed RFC 1949, which

specifies a solution for Internet Protocol (IP) multicast. The protocol suggests in-

tegrating “Core Based Trees” into Internet Group Management Protocol IGMPv1

to provide a key management system in which “core” and non-core routers control

the flow of multicast keys, potentially with worldwide application. However, since

the core routers are defined statically, the resultant tree forms a rigid design that is

susceptible to modern denial-of-service (DoS) attacks. If one interior node were to

become unavailable, a potentially large section of the recipient population could no

longer receive key updates and other multicast messages. A solution to this vulner-

ability is to maintain knowledge about larger sections of the tree at each node with

the intent of bypassing faulty nodes; however, because of the added responsibility for

non-core nodes, the CBT implementation provides no such solution. In addition to

these shortcomings, CBT’s implementation at the network layer makes it applicable

only on networks where IP multicast is supported. Therefore this solution is limited

8



in scope by practical barriers; the requirement for specific router configuration makes

it infeasible for WAN and ad hoc deployments.

2.1.3.2 GKMP. Harney and Muckenhirn presented Group Key Man-

agement Protocol (GKMP) in RFCs 2093 and 2094 [10] [9]. Unlike CBT, GKMP is

an application-layer protocol that defines a role-based framework for key distribution

instead of a network-level infrastructure. Although not required, GKMP may utilize

and benefit from an underlying multicast messaging system. The framework specifies

the designation of a central KD for each group that is responsible for creating and

delivering new keys, but it does not specify a physical transport mechanism. How-

ever, with GKMP, the KD must verify every key update via a receipt message from

each member node. Although this provides a high level of reliability, it does not scale

well as groups become very large. In particular, KDs suffer a massive performance

decrease during large group rekeys since each group member must respond directly

to the distributor to confirm receipt.

2.1.4 Modern Solutions.

2.1.4.1 Iolus. Mittra [16] proposes Iolus, a framework for group key

management that also allows secure multicasting. Iolus presents a tree-based dissem-

ination model that places key management in the hands of a single group security

controller (GSC) and several group security intermediaries (GSI), which function to-

gether as a distributed KD. Figure 2.2 shows a small-scale sample of a group utilizing

the Iolus framework. The GSC creates the group key and sends it to only the GSIs

that it knows about. The innermost GSIs then forward the key onto some group

members and additional GSIs. This dissemination scheme reduces the overhead of a

single rekey on any given node (including the GSC) to a constant, depending upon

the tree formation policy. In addition, secure unicast links between each pair provide

the ability to deliver key updates without the need for special “key encryption keys”

used in some implementations.

9



Figure 2.2: Tree-based key dissemination with Iolus utilizes a
single GSC and multiple GSIs.

Although Iolus meets its goal of scalability, it lacks a necessary level of fault

tolerance for large groups. Specifically, if a single GSI near the GSC becomes in-

operable, the sizable portion of the group subordinate to that GSI will not receive

key updates; this is a significant drawback in an asynchronous rekeying environment.

Even with periodic rekeys, attempts to recover from a single faulty GSI will likely

cascade into catastrophic failure when affected members between the faulty GSI and

the edge bombard inner GSIs and the GSC with rekey requests.

However, the framework provides a valuable reference model upon which several

other modern group key management protocols are based, including Hubenko’s satel-

lite key management protocol [12]; thus it is included in this document as a modern

solution. We learn much from the delegation of key dissemination responsibilities and

the use of secure unicast links for point-to-point propagation.

2.1.4.2 GSAKMP. RFC 4535 [8] defines the Group Secure Associ-

ation Key Management Protocol GSAKMP, whose rekey policy, by default, relies

10



on Logical Key Hierarchy LKH. Developed in 1998, Logical Key Hierarchy (LKH)

specifies the use of key graphs–trees that logically represent special “key encryption

keys” (KEK) and users in a group [20]. Note the dissimilarity between LKH and

tree-based dissemination protocols like Iolus; in LKH, interior tree nodes represent

KEKs, and leaf nodes represent users. Each leaf has a single parent node that acts

as the user’s unique key. In tree-based dissemination protocols, interior nodes are

physical endpoints.

LKH is useful for reducing bandwidth requirements when group controllers are

solely responsible for the task of key dissemination. The number of rekey messages

required to rekey an entire group after a single member is removed is 𝛼 log𝛼 𝑁 − 1,

where 𝛼 is the degree of the tree and 𝑁 is the total number of group members.

However, this still tends to be a rather large burden on the group controller as 𝑁

becomes very large. Also, any delegation of the key update mechanism via a tree-based

dissemination routine encounters the same issues with fault tolerance as described in

Section 2.1.4.1. Thus, even modern key management protocols like GSAKMP suffer

many of the same issues as early protocols. Either central key managers accept the

burden of rekeying large sections of groups, or the group relies on a fault-intolerant

dissemination mechanism.

2.1.5 Gossip-based Security Solutions.

2.1.5.1 Gossip Definition.

Bimodal Multicast. Developed separately in 1987 by Demers

and Birman [3] [2], “gossip” multicast (referred to by Demers as “epidemic”) de-

fined a framework for probabilistic message dissemination that opened a new area of

research in distributed computing. This class of algorithms adapts the sociological

phenomenon of the same name to network message handling; when a person becomes

aware of some information that may be valuable to her community, she communicates

that information to a small, random group of her friends; her friends follow suit and so

11



forth, until finally the message seems to have been communicated so much that there

is no point in passing it any further. These are also called “epidemic” algorithms as

they seem to model the spread of disease in living organisms [3].

Gossip Description. Originally designed for fully-connected net-

works, gossip defined a method for a single node on a network to deliver a message

to all other endpoints on the same network without contacting each recipient node

directly [2] [3].

As an example, consider a fully-connected network including nodes A through

Z. If node A wants to deliver a message to nodes B through Z, it has several options.

In a non-gossip implementation, node A contacts node B, then contacts node C, and

so forth until it has contacted every other node. With gossip dissemination, node A

randomly contacts a subset of other nodes (say, nodes D and F), and then nodes D

and F randomly contact some other subset of nodes until the other nodes have likely

received the message. Note the word “likely.” The stochastic nature of gossip creates

a small probability that some intended recipients will not receive a given message.

To reduce this probability (or at least account for it), gossip relies upon two

basic parameters: a number of rounds that the message will be forwarded, and a

percentage likelihood that a node will forward a message to another node. The latter

is referred to in this text as infectivity.

Rounds can be defined several ways, but the premise is that, during one round,

a node that has received a gossiped message will randomly forward the message to

a neighboring node. This can be performed via a synchronized clock, where a round

might correspond to one or more clock ticks. In this text, a round is defined as a

non-synchronized countdown. That is, when the original message is constructed, it

attaches a maximum round number. When the message is forwarded, the forwarding

node decrements the rounds value; as the message traverses the network, it eventually

reaches zero. When a message is received with a round number equal to zero, it is

forwarded no more.
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Infectivity is the likelihood that, during a round, a node will forward a gossiped

message. When a node receives a gossiped message, it randomly selects recipient

nodes from its neighbors and, based upon the infectivity-weighted random value,

either forwards the message or simply waits that round.

These parameters impact the number of transmissions for a single message

traversing a network and the likelihood that a node will miss a message. Increas-

ing either parameter will result in more transmissions but fewer missed nodes. (In

the remainder of this text, “messages,” when used as a performance metric, refers to

the actual number of transmissions.)

In addition to these parameters, this research investigates reducing the average

k-connectivity of the network from a full mesh to increase reliability while reducing

message traffic.

Benefits. Gossip algorithms provide highly probabilistic delivery

guarantees while minimizing network resource consumption. In addition, this class

of algorithms shows improved resilience to changes in network topology over existing

multicast algorithms, particularly ones that are based upon routing trees. Of partic-

ular benefit to the problem domain, gossip-based protocols function well even when

individual nodes have little or no advance knowledge about the surrounding network

topology. Nodes need only know about their neighbors to successfully disseminate

group messages [3] [2].

Modern Advancements. Modern implementations borrow the

terms infectivity and susceptibility from epidemiology to describe the rate at which

nodes seek to “push” data to their neighbors and the rate at which nodes desire

data from neighbors. Hopkinson et al. [14] propose a “gravitational” gossip algorithm

wherein member nodes propagate information based upon the product of these values

per connected node pair. In [11], the same authors apply heuristics to gravitational

gossip to dynamically modify gossip probabilities as network conditions change.
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Other Applications in Distributed Systems. Although originally

applied to reliable database replication [3], gossip is applied successfully in other

areas of distributed computing, for instance in mobile ad hoc routing and peer-to-peer

overlay management. Haas et al. [7] apply gossip in mobile ad hoc routing and suggest

parameters for gossip rates; however, their experiments are applied only to perfectly

manicured grid overlays (requiring many links) and do not model node failure. Jelasity

et al. [13] apply gossip for peer sampling in wide area overlay management. The

decision to utilize gossip for overlays asserts a trend in fault tolerant computing; as

the viability of tree-based and other hierarchical algorithms diminishes, fault-tolerant

overlay management relies comfortably upon the high level of adaptability and low

maintenance costs afforded by gossip.

2.1.5.2 Gossip with Virtual Synchrony. Yan et al. [21] propose gossip

with virtual synchrony, a layered approach that is similar in spirit to the solution

presented in this manuscript, but lacks critical implementation detail. Specifically,

the authors’ choice of virtual synchrony seems to indicate a preference of perfect rekey

reliability at perhaps a large performance cost. Additionally, the supplied performance

analysis models only the effect of network size on request overhead and throughput,

against a protocol not specifically intended for group key dissemination. The existence

of this protocol is noted primarily to credit the authors for establishing the legitimacy

of a gossip-based dissemination policy.

2.1.5.3 GOSKEY. Graham [6] presents GOSKEY, a protocol for

on-demand key distribution in which message senders provide a unique key for each

message they send, acting as both a group member and KD. GOSKEY aims to reduce

end-to-end delay of encrypted multicast messages and increase fault tolerance within

a wireless ad-hoc network.

GOSKEY’s functionality is summarized with its key dissemination routine,

which is invoked when a group member wishes to encrypt a message to be sent to

other group members [6]:

14



1. Member creates new group key K.

2. Member gossips K to its neighbors via pre-established secure unicast links.

3. Member encrypts message M with K to create 𝑀𝐾 .

4. Member broadcasts 𝑀𝐾 to its group via some separate pathway.

To support this routine, other nodes belonging to the same group implement

the following routine upon receiving K:

1. Member receives K and immediately gossips K to its own neighbors.

2. Member stores K in a cache in expectation of receiving 𝑀𝐾 .

Additionally, recipient nodes employ the following logic upon receiving 𝑀𝐾 :

1. If Member has K in its cache, it decrypts 𝑀𝐾 into M.

2. If Member does not have K, it requests K from the message’s originator, then

decrypts 𝑀𝐾 into M.

Graham leaves components of these procedures abstracted, most importantly

the gossip parameters used during experimentation and the method for creating and

destroying the secure unicast links. Although it mentions the use of an access control

list (ACL), it does not specifically utilize it in the context of any group membership

action such as a join or a leave.

The solution provided in this manuscript borrows only GOSKEY’s dissemina-

tion mechanism to achieve whole-group key agreement. It also leverages the mecha-

nism to support the group key management primitives (e.g., join, remove, leave) and

defines a peer linking method to create and maintain the underlying topology. This

is described in further detail in Chapter 3.

2.1.6 Summary. Modern group key management protocols tend to suffer

the same drawbacks as early protocols, namely with respect to fault intolerant tree-

based key distribution policies. While some protocols have successfully reduced the
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workload placed on KDs, group security controllers, and group controllers, they have

only marginally advanced in delegating key dissemination responsibilities without

sacrificing fault tolerance. Recent studies suggest the viability of gossip-based key

dissemination but present them in fundamentally different contexts with different

goals.

Chapter 3 proposes a gossip-based group key management protocol that effi-

ciently supports secure, wide-area communications involving many nodes, while sat-

isfying the additional requirement of fault tolerance.
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III. Methodology

This chapter defines the group key management problem, provides an algorithm to

solve it for the specified problem domain, and presents methods to test it empirically

against tree-based dissemination.

3.1 Problem Definition

Group communication becomes increasingly complex with the addition of the

security requirement. Intuitively, as specific security requirements are added, the

complexity of the required algorithm increases accordingly. Most currently available

algorithms for secure group communication value reliability above other requirements,

often at the cost of scalability, and sometimes with an additional requirement of

topology control. This chapter expresses a model for group key management that

relaxes the reliability requirement of certain operations to a highly probabilistic level.

As a result, this establishes greater fault tolerance, reduces the number of messages

for rekey operations, and eliminates the need for advanced topology control. Most

importantly, this design provides a greater level of fault tolerance over existing designs,

such as tree-based algorithms discussed in Chapter 2. Specifically, a small number of

failing nodes has a far less devastating effect on reliability at any given point.

3.1.1 Problem Domain. The selected group key management problem do-

main is defined by a) varying levels of infrastructural connectedness within the net-

work under test, as well as b) varying levels of node failure. It should be made clear

that this failure rate is different from the rate at which nodes deliberately request

and rescind their group memberships. Although a given algorithm may treat the two

situations the same, they are distinctly different actions with respect to the security

model, described in Section 3.2.1.

3.1.2 Goals and Hypothesis. The proposed model for secure multicast com-

munication aims to accomplish the following:

1. Maintain algorithmic complexity for exchanging encryption keys at a constant.
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2. Reduce the algorithmic complexity for subgroup joins and leaves to a constant.

3. Minimize dependence upon central keying or certificate authorities for encryp-

tion and authentication.

4. Require nodes to have no knowledge of a global topology (i.e., each node knows

only its neighbors).

5. Survive DoS and replay attacks.

6. Withstand faults by employing gossip-based “pull” routines and randomized

topology control

The researcher hypothesizes that, given the relaxation of the reliability require-

ment, the proposed algorithm and model will exhibit higher levels of fault tolerance

than currently available group key management protocols, with a very manageable

impact on performance.

3.2 Approach

This section describes the security model and proposes an algorithm for group

key management. It also addresses any assumptions, limitations, and vulnerabilities

that may result. For a comprehensive explanation of security concepts, see [18].

3.2.1 Security Model. The goal of this research is to explore a new solution

to the group key management problem–to provide member nodes on a network the

ability to communicate securely to a group of other nodes on the network.

In order to classify this design as a legitimate key agreement protocol, the

following description addresses the properties and actions of the proposed design.

The security model is defined by the following security primitives:

Authentication For a node to be able to receive or transmit any message on any

part of the network, it must have the requisite credentials to do so. This pro-

tocol takes a hybrid approach to authentication by issuing signed certificates to
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operate (CTOs) for validating a node’s request to join a group. This is described

in further detail in Section 3.2.3.1.

Forward secrecy A message that was encrypted with an expired group key cannot

be decrypted with the current group key or any future group key.

Accordingly, the actions to support the security model are defined as follows:

Join The Join primitive provides a Requestor the ability to become a Member of a

key management group. In order to join, a Requestor must have credentials

that are recognizable by the group controller, and must not exist on the group

controller’s blacklist.

Leave A node may elect to leave the group and discontinue further receipt of (and

obligation to retransmit) any key update messages. Since it has not been de-

liberately removed, this action does not require special security measures; the

node notifies its neighbors of its intent to discontinue participation only for the

proper functioning of the messaging protocol

Remove When a group has lost trust in a node, the security controller must take

actions to preserve forward secrecy. Within the context of group key manage-

ment, the Remove operation is responsible for ensuring that members selected

for removal cannot receive the new key or any future key updates. It may also

specify policy for performing out-of-band, or “asynchronous,” Rekey operations

to immediately close security holes.

Rekey The KD must generate and supply new group keys to members when directed

by the group manager, or periodically by policy. The Rekey action dictates how

the new keys are delivered to group member nodes so that only trusted members

receive the new key and blacklisted members cannot.

3.2.2 Key Management Protocol Overview. With respect to the specific

problem domain characteristics, this research strives to find the best algorithm for

key exchange in networks marked by generally high levels of connectedness and vary-
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ing levels of participation by specific nodes. As such, the protocol presented herein

employs an algorithm that adapts to these constraints while accomplishing its goals.

The central component of the proposed design is gossip-based physical key

distribution. This behavior is combined with random peer sampling to achieve an

application-layer model that meets the goals outlined above. The following sections

describe the proposed algorithm’s key management logic.

3.2.3 Key Management Core Routines.

3.2.3.1 Join (Requestor). A node wishing to join a secure group

contact the KD to authenticate its connection to the group and begin receiving group

key updates. The following pseudocode describes the join process concisely:

1. Requestor establishes secure public key infrastructure (PKI) session with KD

via three-way handshake

2. Requestor requests certificate to operate (CTO) from KD

3. If Requestor is on blacklist, KD denies Requestor’s request and ends secure

session; else, KD generates CTO for Requestor with the following information:

(a) List of peers with whom Member shall connect

(b) Current group key

(c) Timestamp

4. KD signs CTO with its private key and delivers signed CTO to Requestor

5. For each peer provided via CTO, Requestor:

(a) Establishes secure PKI session with peer

(b) Presents CTO to peer

(c) Maintains secure session to propagate future key updates
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The above pseudocode assumes in step 5b that the CTO being provided is

current and valid. However, this may not be the case, as a blacklisted member may

attempt to rejoin a group with an old or forged CTO. To prevent an unauthorized

connection from being established, active members must validate these connection

requests via the following auxiliary logic:

1. Member accepts Requestor’s secure session request and labels session “Request”

2. Member receives Requestor’s CTO

3. Member validates CTO integrity and authenticity with KD’s public key; if CTO

is corrupt or not authentic, Member ends session

4. Member compares CTO timestamp to current time; if CTO is too old, Member

ends session

5. Member approves connection and relabels session “Key Management”

The above logic assumes the following is true:

1. Nodes know KD’s destination address and its public key prior to submitting a

request

2. A data path exists between each member and the KD (although they do not

necessarily maintain a secure unicast link)

3. All members and KD have unique public and private key pairs

4. Nodes are synchronized against a common time source (e.g., global positioning

satellite). The accuracy, or “stratum” level, of the time source should be con-

sidered when deciding rekey frequency and skew tolerance. Whereas Network

Time Protocol (NTP) may be sufficient in applications with daily rekeying, GPS

is more suitable to hourly rekeys or when asynchronous rekeys are common.

After the Join operation is successfully executed, a Requestor becomes a Mem-

ber until either Leave or Remove operations are carried out against the Member. For

efficiency, the secure session used for CTO verification is preserved and relabeled for

group key updates.
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3.2.3.2 Rekey (KD). Either at specific time intervals, or due to a

member’s removal, the KD will generate a new group key and disseminate the new key

to its peers for propagation to the entire group. The KD executes the following logic

to govern this procedure. The gossip-style behavior is achieved when the members

connected to the KD receive the Rekey message; the gossip logic is described in the

Rekey (Member) routine in Section 3.2.3.3.

1. KD generates random new group key

2. KD constructs Rekey message with the following information:

(a) New group key

(b) Timestamp

(c) Recently blacklisted members

3. KD signs Rekey message with KD’s private key

4. KD appends number of total requested gossip rounds (unsigned) and delivers

to each of its peers, except for blacklisted members

Note that the gossip rounds field is left unsigned so that Members can decre-

ment this value without affecting the integrity of the Rekey message itself. This

presents a minor vulnerability since a “rogue” member may increase this value in-

stead of decrementing it (see Section 3.2.3.3). This vulnerability is mitigated by the

signed timestamp; Rekey propagation ceases after the globally-specified threshold has

elapsed, and gossip round numbers are rendered moot.

3.2.3.3 Rekey (Member). The heart of this protocol is each Member’s

responsibility to propagate Rekeys to other Members in the group. This stage intro-

duces the gossip-based dissemination logic from which the protocol achieves its fault

tolerant benefits. Members adhere to the logic below to propagate new group keys

randomly to their neighbors:

1. Member receives Rekey message from peer (KD or other Member)
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2. If Rekey message has already been received, Member does nothing; else,

3. Member authenticates Rekey message as follows:

(a) Member verifies Rekey authenticity with KD’s public key

(b) Member checks Rekey timestamp; if timestamp predates current key’s

birthdate or Rekey threshold has elapsed, Member does nothing and exits;

else:

4. Member applies new group key for later use in group communications

5. Member forwards the Rekey message to its peers

(a) If gossip rounds value is 0, exit; else,

(b) Decrement gossip rounds value by 1

(c) Forward original Rekey message (with decremented round number) to ran-

dom subset of peers (except blacklisted Members) based on current infec-

tivity rate and round number

3.2.3.4 Remove (KD/Member). When a member is forcefully removed

from the group, a rekey must be performed asynchronously so that the removed

member cannot receive future group transmissions. This action is carried out jointly

by the KD and the peers of the removed member. The KD executes the following:

1. KD receives direction to remove Member from group

2. KD directly notifies removed members’ peers of upcoming removal via PKI

3. Each Member ends secure session with removed Member

4. KD performs asynchronous Rekey, adding removed members to blacklist

This process is remarkably simpler than existing solutions, which often require

many “key encryption keys” to be generated, updated, and individually disseminated,

such as in LKH [20]. Instead, this routine relies upon secure point-to-point sessions

and a novel dissemination policy that prevents removed members from receiving the

new group key.
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3.2.3.5 Leave. A Member voluntarily departing a group may or may

not have security implications. Therefore, it is within the group manager’s discretion

whether to perform a Rekey after a Member leaves. However, to correctly manage

the key update overlay, the KD should be apprised of members leaving the group.

Therefore, in implementations that do not require a Rekey, a departing Member

timestamps, encrypts, signs, and transmits a single Leave message to the KD, and

ends all peer sessions. If this is not done, future transmissions to the departed node

are treated as missed messages.

3.2.4 Key Management Auxiliary Routines. Several of the above primitives

depend upon auxiliary logic to ensure proper dissemination and reduce unnecessary

communication between Members and the KD.

3.2.4.1 Await New Key / Neighbor Rekey Request (Member). The pro-

tocol employs periodic rekeys specifically to account for the probabilistic convergence

of the gossip-based Rekey routine. That is, after each scheduled Rekey, a proba-

bilistically small number of nodes will not receive the new key. To account for this

discrepancy, each node enters an “active waiting” state at the scheduled Rekey inter-

vals. If a new key does not arrive within a specified window following the scheduled

Rekey, the node will request the new key from its peers, who probably received it. In

the very rare instance that a node and none of its neighbors receive the current key,

it can be estimated with high probability that a Rekey was in fact not performed. In

this instance a node will wait a random period of time over a lengthy interval, then

request a Rekey directly from the KD (and disseminate to its peers). The random

wait prevents nodes from unwittingly overloading the KD, thereby exacerbating the

impact of a missed Rekey. After receiving the new key, the left-out member executes

the Rekey (Member) routine, omitting the propagation step.

For asynchronous rekeys, there is no way for missed nodes to know that they did

not receive a new key without contacting peers. In these instances, a probabilistically

small number of nodes may continue for some time (not exceeding the periodic Rekey
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interval) without the current group key. However, providing a “pull” mechanism to

account for this situation may cause more problems than it solves. Consider a single

node that does not receive an asynchronous Rekey. If the left-out node receives a

message encrypted with an unrecognized group key, it attempts to obtain the “new”

group key from either its peers or the KD. If there was in fact an asynchronous Rekey,

then the left-out node obtains the new group key with minimal impact to network

traffic. However, it becomes too easy for a single malicious node to send out many

messages encrypted with a false “new” key. The result is a saturated network, as

all group members simultaneously rush to discover the unknown key. Therefore, if

a message is received that has been encrypted with an unknown key, it is in the

entire group’s best interest for the left-out node to await the next periodic Rekey.

Additionally, it may be in the KD’s best interest to limit asynchronous Rekeys, at the

cost of allowing blacklisted members to read encrypted group traffic until the next

scheduled Rekey. This policy can be determined based on the group’s specific security

priorities.

3.2.4.2 Provide Missed Key (Member/KD). Following the above logic,

missed synchronous Rekeys are followed by key requests. Each member must be able

to respond to these requests by providing the signed Rekey message in its original

state to the left-out member. To facilitate this feature, the KD and each member are

responsible for keeping the last signed Rekey message it sent or received.

3.2.4.3 Island Detection (KD). After many joins and leaves, and

during times of higher failure, it is possible that the peer network will form “islands,”

or subgroups that have no peer path to or from the KD. A simple method for rejoining

these subgroups with the KD-reachable group is for the KD to deliver extra certificates

to operate to nodes that request synchronous rekeys directly from the KD. Since after

every synchronous rekey, the KD knows which nodes were reached and which were

not, the KD can pair unreachable nodes with reachable nodes via the CTO. That is,

the KD provides each unreachable node with the address of a node that was reached
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during the last synchronous rekey. The KD is able to perform this operation with

only an ACL and a single extra message, and need not retain any long-term special

information about the topology to make this work.

3.2.4.4 Attack Prevention. This section summarizes the techniques

employed by this protocol that prevent DoS and replay attacks.

Denial of Service. The protocol’s time synchronization allows

for certain actions to take place during predetermined time slots. For example, syn-

chronous rekeys occur at specific times for only a short duration. During that period,

a node that has not received the new key can request a retransmission from its neigh-

boring nodes and the KD. However, such requests made outside this period will be

ignored; this prevents a malicious node from permanently overloading the KD’s queue

and denying other members the KD’s services.

Additionally, to prevent a bogus rekey message from being propagated through-

out the network, the Rekey messages are authenticated with the KD’s public key

before being forwarded. Without this feature, a malicious node could create false

rekey messages and “forward” them as though they were legitimate.

Replay Attacks. Time stamping and signing (in that order) all

Rekey messages prevents replay attacks. Specifically, it prevents a malicious node

from redelivering an old Rekey message and setting the group key to an old key that

may have been compromised.

3.3 System Boundaries

The group key management problem aims to provide usable keys to authenti-

cated users for the purpose of secure subgroup communications. For this reason, this

system is limited in scope to the management and dissemination of keys, while the

specific use of these keys is not studied. For instance, a system designer may opt

to use a gossip-based group key management system but utilize a tree-based mul-
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ticast algorithm or point-to-point messaging for the encrypted messages. Certainly,

a key management subsystem lends itself to a wide variety of higher-level software

implementations.

3.4 System Services

The actions outlined in Section 3.2.3 provide the major services of the proposed

protocol. The Join, Leave, Remove, and Rekey actions offer users the necessary

mechanisms to obtain and update group keys for the purpose of secure group com-

munications.

3.5 Workload

For this study, the workload is a single Rekey message. The Rekey message

originates at the KD and broadcasts outwards to the member nodes belonging to

the same group. The message contains only the new key, and does not specify any

blacklisted members.

3.6 Performance Metrics

1. Total messages sent. This is the sum of gossip “pushes,” neighbor rekey requests,

and requests sent to the KD that could not be answered via neighbor rekey

requests.

2. KD-direct rekeys / Unreached healthy nodes. Since a specific goal is to mini-

mize dependence upon central key authorities, the number of nodes that must

be rekeyed by the KD are quantified separately. In an asynchronous rekeying

environment, this number is equated to healthy nodes that are not reached by

either the gossip push or pull routines.

See Section 3.8 for a further description of how these metrics are utilized for

experimental design.
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3.7 System Parameters

The following values are tested:

1. Peer links. This specifies the total number of link pairs used for key dissemina-

tion.

2. Infectivity. This is the percentage likelihood that a given node may spread a

key update to a peer.

3. Gossip rounds. This is the total number of times that a given message instance

will be passed along before it dies.

4. Topology. This research examines a randomized peer topology versus tree-based

and “torus” topologies. A torus topology is a ring overlay that is engineered

specifically for fault tolerance. See Figure 3.1 for a visual example.

3.8 Evaluation Technique

Java-based simulations are conducted for each experiment. Data for the averages

of multiple runs are output to comma-delimited spreadsheets and analyzed with the

JMP 8 statistical software package.

For the parameters listed in Section 3.7, the rekey mechanism is compared with

the tree-based rekey mechanism favored by modern implementations.

3.9 Experiment Setup

Experiments are divided into five parts. Part 1 improves the parameters for

synchronous rekeys with neighbor rekey requests enabled. Part 2 improves the pa-

rameters for asynchronous rekeys with island detection enabled. Part 3 compares

improved asynchronous rekeys with the proposed protocol versus a tree-based dis-

semination routine that does not utilize any of the failure recovery methods described

in this research. Part 4 tests whether the improved parameters for asynchronous

rekeys can benefit from a managed overlay (specifically, a torus) over a random over-

lay. Part 5 tests scalability to large groups by comparing performance metrics of a
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Figure 3.1: A torus overlay provides fault tolerance with many
redundant links
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1000-node group to those of a 100-node group. For each set of parameters, the sim-

ulation generates 2000 random graphs and simulates a single rekey event per graph,

counting the messages as they are passed. After the rekey has completed, the simu-

lation counts how many healthy nodes received the rekey message. For synchronous

rekeys, the simulation counts how many nodes were forced to contact the KD directly

after a round of neighbor rekey requests. In this way the simulation quickly inspects

a “moment in time” on an arbitrary group that has already seen several members join

and leave.

To improve the synchronous rekey parameters, a simple genetic algorithm is

employed to minimize the following weighted sum fitness function:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠+ 𝑝𝑚𝑢𝑙𝑡 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐾𝐷𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

(3.1)

where 𝑝𝑚𝑢𝑙𝑡 is a penalty multiplier, described further in the next paragraph. In this

way, the algorithm rewards a low number of overall messages sent for a synchronous

rekey and penalizes the expensive requests made directly to the KD. This achieves

the goal of primarily maximizing efficiency and secondarily minimizing expensive fault

situations for synchronous rekeys.

To improve the asynchronous rekey parameters, a similar genetic algorithm is

employed to minimize the following weighted sum fitness function:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑖𝑠𝑠𝑒𝑑𝑛𝑜𝑑𝑒𝑠+ 𝑝𝑚𝑢𝑙𝑡 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠

(3.2)

30



where 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑖𝑠𝑠𝑒𝑑𝑛𝑜𝑑𝑒𝑠 corresponds to the number of nodes that are not reached

during a single rekey push. This time, the algorithm rewards high levels of first-push

convergence and penalizes situations that require many messages.

Note the importance of the penalty multiplier. Without it, the two fitness

functions would be identical. In fact, over-penalizing KD-direct rekeys during a syn-

chronous rekey would result in fitness values that resembled an asynchronous rekey.

More concisely, 𝑝𝑚𝑢𝑙𝑡 is set to indicate the level of importance of efficiency during

synchronous rekeys, and the importance of reliability during asynchronous rekeys.

This may vary between applications and administrator preference, but should not be

too high in either case. A 𝑝𝑚𝑢𝑙𝑡 of 3 is used for synchronous rekeys during experi-

ments, indicating that a KD-direct rekey has the perceived negative effect on efficiency

of sending 3 extra messages. For asynchronous rekeys, a 𝑝𝑚𝑢𝑙𝑡 of 0.01 is used. In

this way, the benefit of a small number of missed nodes can only be offset by a very

large number of extra messages. Thus, the 𝑝𝑚𝑢𝑙𝑡 value is the weighted aspect of each

weighted sum function.

Each round of the genetic algorithm selects a set of parameters from the superior

solution pool and sets between 1 and all of the parameters to a random new value in

the mutating parameter’s range. To maintain solution diversity, the probability that

1, 2, and 3 parameters will mutate in a given round are set to 60%, 25%, and 15%,

respectively. Additionally, no unique set of parameters may to enter the superior

solution set more than once.

For each scenario, 250, 000 trials are performed for failure rates ranging from

5% to 40% in 5% increments, maintaining a pool of 40 of the most superior parameter

sets according to fitness value.

Once the improved parameters are achieved for each failure rate, the algorithm is

then compared in simulations against unimproved tree-based solutions and improved

torus-based solutions for the entire range of failure rates between 5% and 40% (36

failure rates in total). This exercise determines a) whether a random overlay topology
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with improved parameters can perform with greater fault tolerance than existing tree-

based routines (no improved parameters, no fault recovery heuristics) and b) whether

heavily managing a fault tolerant overlay with improved parameters has any benefit.

To study scalability, improved parameters from the previous experiments are

applied to a graph of 1000 nodes and performance is evaluated under 5–40% failure

rates based upon the metrics described in section 3.6. The researcher hypothesizes

that the total messages required to rekey the group will remain in direct proportion

to the total number of nodes for a given failure rate; note that this increased burden

is distributed among the member nodes rather than falling entirely on the KD as it

would in other protocols.

3.9.1 Input Graphs. With the exception of the scalability experiment, the

input graph for each trial is of size 100 nodes. The graph is generated randomly to

model a “slice in time” that represents a given network that has encountered several

member joins and leaves. By design, this may lead to disjoint graphs in situations

where there are few links, thus the benefit of island detection and repair feature.

For each parameter scenario, a new input graph is generated per run to ensure that

performance metrics are measured as an average of many runs. The major benefit

of this criteria is the practicality of measuring the protocol against a network that

changes over time; the major disadvantage is the processing cost of generating many

simulated networks.

3.10 Summary

A framework is provided for group key exchange that affords high levels of

fault tolerance while keeping messaging load to a minimum. A method is provided

to improve these parameters for varying levels of intermittent node failure among a

given group, and experiments are presented to illustrate their value versus existing

key management techniques. Experimental results are discussed in Chapter 4.
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IV. Results

This chapter summarizes the results of the experiments outlined in Chapter 3.

4.1 Synchronous Rekey Parameter Improvement

After 250, 000 generations, the optimal parameters for the synchronous rekey

trials converge. For all failure rates, the algorithm favored the lowest possible number

of links, high infectivity, and an average of 6.5 gossip rounds (+/- .2, 95% CI). No-

tably these parameters closely resemble parameters of a binary tree (𝑙𝑜𝑔2100 ≈ 6.643).

That is, for synchronous rekeys, an algorithm that heavily favors efficiency will nat-

urally suggest flooding via binary trees or a similar overlay. The analysis of fault

tolerance follows: the expense of some member nodes having to contact the key dis-

tributor directly for a rekey is absorbed by the overwhelming efficiency of a tree-based

algorithm. Note that for security concerns, this analysis applies only to synchronous

rekeys, in which members have the ability to request rekey messages from other nodes

and the KD.

4.2 Asynchronous Rekey Parameter Improvement

The improved parameters for asynchronous rekeys also converge, but on a much

different set of values. In this scenario, the best solutions are marked by maximum

infectivity levels (95 − 100%), arbitrarily many gossip rounds, and a relatively low

number of links that rose with respect to node failure rate. Indeed, a graph could be

drawn to model the relationship between a given failure rate and the number of peer

links required to minimize the fitness function.

To illuminate this relationship, extra simulations were built to measure the

efficiency of each number of peer links over the entire parameter range while keeping

infectivity set to 100% and gossip rounds set to infinity (i.e., a message flooding

scenario). For each of the 36 failure rates from 5% to 40%, a regression is applied to

the fitness values, and the number of links corresponding to the minimum response

is computed with statistical software. The improved links values are then graphed
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Figure 4.1: Fitness values by links, 5 percent failure rate

against their respective failure rates, and a final regression is applied to the improved

links values. All regressions are found to be quartic with R-squared values not less

than .96 and a 95% confidence interval. The graph in figure 4.3 is a useful tool for

the KD’s topology control function; for an observed node failure rate, it identifies the

ideal number of links per node that a KD should assign to new nodes as they join.

Regressions by failure rate are shown in figures 4.1 and 4.2. More regressions can be

found at Appendix A.

4.3 Improved Asynchronous Rekeys with Heuristics Compared to Tree-

based Dissemination (No Heuristics)

This experiment shows that a network that has performed simple island detec-

tion and correction will exhibit greater fault tolerance than a tree-based dissemination

routine with no such heuristics during asynchronous rekeys, and for a reasonable cost.

Figure 4.4 shows the average number of nodes per healthy nodes that will miss

an asynchronous rekey “push” for both a random overlay network and a tree-based
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Figure 4.2: Fitness values by links, 40 percent failure rate

dissemination network. Even during periods of high failure rates, the proposed algo-

rithm maintains a high level of convergence while the tree-based dissemination routine

fails linearly with respect to node failure rate.

4.4 Random Overlay Compared to Managed “Torus” Overlay on Im-

proved Asynchronous Rekeys

This experiment compares randomized overlay topology against a managed

“torus” topology described in Chapter 3 with the goal of measuring the performance

benefits of a managed overlay. Experimentation reveals that there are no tangible

performance benefits to managing an overlay to such a degree.

Each topology is tested with the improved parameters from Section 4.2 for

multiple failure rates and produce the graph at figure 4.5. For the parameters specified

in Section 4.2, there is no significant performance increase for utilizing a managed

overlay instead of a random overlay. In fact, the extra CTO messages required to
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Figure 4.3: Improved links parameter by node failure rate

Figure 4.4: Random overlay with island detection versus tree-based dissemination
without island detection
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Figure 4.5: Improved parameters, random overlay versus torus overlay

Table 4.1: Improved links
value for 100-node and 1000-node
groups, by failure rate

100 1000

5 237.86 2479.59

20 287.71 2765.91

35 363.19 3243.86

Table 4.2: Messages for 100-
node and 1000-node groups with
improved parameters, by failure
rate

100 1000

5 375.15 3842.7

20 411.52 3863.96

35 451.41 3947.86

bring a degraded torus topology back to a managed state make the torus topology

less efficient than randomization.

4.5 Scalability to 1000-node Groups

The results of the trials against the 1000-node input graphs indicate that the

proposed protocol is indeed scalable to very large groups. Quartic regressions are

shown in Figures 4.6, 4.7, and 4.8 that correspond to 5%, 20%, and 35% failure

rates, respectively. Minimizing the fitness value for these regressions, ideal links and

messages values are calculated and shown in Tables 4.1 and 4.2. It is interesting to

note that as the failure rate increases, the total messages per node is actually lower

for the 1000-node group.
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Figure 4.6: Fitness values by links, 1000 nodes, 5 percent failure rate

Figure 4.7: Fitness values by links, 1000 nodes, 20 percent failure rate
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Figure 4.8: Fitness values by links, 1000 nodes, 35 percent failure rate
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V. Conclusions

5.1 Significance and Interpretation of Analysis

The results of the five experiments indicate that the proposed protocol succeeds

in providing a lightweight, scalable, and fault-tolerant solution to the group key man-

agement problem. Parameter improvement provides a simple way of calculating more

efficient parameters for a given group based upon 1) the number of nodes in the group

and 2) the expected or calculated node failure rate in the group. Utilizing these pa-

rameters and simple heuristics to detect disjoint subgroups, the protocol achieves a

level of fault tolerance not attainable in current tree-based solutions. Additionally,

experiments demonstrate that random peer overlays suffer no noticeable performance

disadvantage when compared to highly managed overlays.

The results of the analysis in Chapter 4 indicate the different objectives for

synchronous and asynchronous rekeys produce very different topologies with different

parameters. It is found that with the neighbor rekey request feature, synchronous

rekeys favor tree-like topologies. Conversely, asynchronous rekeys aim to deliver keys

with more links relative to the node failure rate on the network. The resultant topol-

ogy is a sparse mesh whose degree grows as the network’s failure rate increases over

time.

Unfortunately a group cannot utilize both topologies at once, and the adminis-

trator must select one that is appropriate to the security requirements of the network.

For instance, if a group can tolerate a small number of nodes not having the group

key for the period of time between synchronous rekeys, he may opt to establish a

tree-based dissemination with neighbor rekey request capabilities to account for link

failures (versus node failures). On the other hand, if it is crucial that asynchronous

rekeys reach as many nodes as possible, the administrator might opt for the topology

with the number of links recommended via the solution in section 4.2. In either case,

the combination of heuristics provides an administrator with several advantages over

current physical dissemination schemes for a low overhead cost.

40



5.2 Open Research

This research effort has practical application in any many wide-area distributed

computing environments, namely electrical power systems monitoring and control

and mobile ad hoc networks. The proposed key management protocol provides drop-

in security for distributed systems that lack defined roles and hierarchy or whose

topology changes over time.

Current efforts to monitor and control the electrical power grid such as NASPI

will benefit greatly from power system simulations that incorporate security mecha-

nisms. Incorporating the proposed key management protocol into an electrical power

and network simulator (e.g., EPOCHS) can provide valuable information to Smart

Grid development teams. As the size of the NASPI network grows to many thousands

of sensors, the need for a simple, fault-tolerant security solution will be absolutely

critical.

Indeed, mobile ad hoc platforms are in greater need of a distributed security

solution than ever before. Unmanned aerial vehicles, which provide highly sensitive,

often classified video feeds to military commanders and intelligence personnel, have

been the subject of scrutiny since the discovery that these feeds are sent almost exclu-

sively unencrypted. As these networks grow in size and become more autonomous, the

need becomes imminent for an encryption solution. The proposed key management

protocol can provide an expedient solution for this circumstance, but there is more re-

search to be done before it can be deployed to a MANET environment. Further study

must be done in the area of peer selection and the viability of direct communication

with a key distributor. Specifically, a sub-protocol for peer selection must consider

physical and spatial limitations when building the network, as it cannot reasonably

rely upon random generation. Additionally, direct communications with a trusted

key distributor may be very costly or impractical due to transmission capabilities and

land features. The plethora of prior research into physical MANET modeling and

peer selection suggest that an immediate investment in this field is highly feasible.
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Appendix A. Additional Figures

Figure A.1: Fitness values by links, 10 percent failure rate
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Figure A.2: Fitness values by links, 15 percent failure rate

Figure A.3: Fitness values by links, 20 percent failure rate
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Figure A.4: Fitness values by links, 25 percent failure rate

Figure A.5: Fitness values by links, 30 percent failure rate
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Figure A.6: Fitness values by links, 35 percent failure rate
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The index is conceptual and does not designate every occurrence of a key-
word. Page numbers in bold represent concept definition or introduction.

certificate authority, see CA

denial-of-service attack, 8

GKMP, 9

group key, 5

group key management protocol, 5

GSAKMP, 10

IETF, 4

IGMP, 8

Internet Engineering Task Force, see IETF

IP multicast, 8

KD, 5

LKH, 11

MBONE, 7

multicast backbone, see MBONE

perfect forward secrecy, see PFS

PFS, 6

RFC, 4

WAN, 7

wide area network, see WAN
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